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Abstract

Social contact patterns among individuals encode the transmission route of infectious diseases and are a key ingredient in
the realistic characterization and modeling of epidemics. Unfortunately, the gathering of high quality experimental data on
contact patterns in human populations is a very difficult task even at the coarse level of mixing patterns among age groups.
Here we propose an alternative route to the estimation of mixing patterns that relies on the construction of virtual
populations parametrized with highly detailed census and demographic data. We present the modeling of the population
of 26 European countries and the generation of the corresponding synthetic contact matrices among the population age
groups. The method is validated by a detailed comparison with the matrices obtained in six European countries by the most
extensive survey study on mixing patterns. The methodology presented here allows a large scale comparison of mixing
patterns in Europe, highlighting general common features as well as country-specific differences. We find clear relations
between epidemiologically relevant quantities (reproduction number and attack rate) and socio-demographic
characteristics of the populations, such as the average age of the population and the duration of primary school cycle.
This study provides a numerical approach for the generation of human mixing patterns that can be used to improve the
accuracy of mathematical models in the absence of specific experimental data.
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Introduction

The accurate characterization of the structure of social contacts

in mathematical and computational models of infectious disease

transmission is a key element in the assessment of the impact of

epidemic outbreaks and in the evaluation of effective control

measures. For instance, the transmissibility potential of a disease

and the final epidemic size strongly depend on mixing patterns

between individuals of the population, which in turn depend on

socio-demographic parameters (e.g. household size, fraction of

workers and students in the population) [1–5]. For this reason,

several efforts have been recently carried out in order to obtain

contact data with the aim of quantifying ‘‘who meets whom

(where, when, how long and how often)’’ [6–12], possibly also over

time [13,14]. Empirical data collection on a large scale is however

extremely difficult and although several models tackling both new

emerging epidemics and endemic diseases have introduced a

significant amount of information on contact patterns [3,5,15–31],

it is clear that the increasing use of data-driven models in the

support of public health decisions is calling for novel approaches to

the estimation of mixing patterns in human populations.

In this study we propose to overcome the above challenges by

developing a general computational approach to derive mixing

patterns from routinely collected socio-demographic data. In

particular we focus on contact matrices by age of 26 European

countries for which we are in the position to construct a synthetic

society in the computer by integrating available social and census

data. The use of contact matrices is the simplest way to improve on

the homogeneous mixing assumption while at the same time

preserving the analytical transparency of the model. The proposed

approach is based on the simulation of a virtual society of agents

that allows the estimate of contact matrices by age in different

social settings: household, school, workplace and general commu-

nity. Unlike classical agent based approaches of epidemic

transmission [3,5,15,17,19,32] and network models [33,34], which

are aimed at characterizing the spatio-temporal spread of

epidemics tagging each individual in the population with a set of

social attributes, we use the same detailed information on social

contacts to construct contact matrices by age in the different

settings to be used in compartmental models. This approach

integrates population details, providing an effective description of

the population structure to be used in computational models

relying on compartmental schemes both at the continuous and

individual based scale. Such a strategy might be very convenient to

reduce the computational time demand in the analysis of large

scale geographical models [21,35–39].
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Those matrices are appropriately combined in order to obtain

the overall ‘‘adequate’’ total contact matrix for influenza-like-

illness. In order to validate the proposed approach we compare the

obtained contact matrices by age with the results of the Polymod

study [9], the first large-scale survey on social mixing patterns

relevant to infectious disease transmission. We show that the

synthetically generated matrices share several common features

with the Polymod matrices, e.g. strong assortativeness and the

presence of similar secondary diagonal contact patterns. We

integrate the synthetic contact matrices in a simple model for acute

infectious diseases and highlight the role played by social and

demographic factors in determining the different epidemic

patterns in different countries. Further analysis and validation on

the derived contact matrices is provided by investigating

seroprevalence data for the 2009 H1N1 influenza pandemic in

the UK.

The proposed method is extremely general and can be readily

exported to other countries in the world for which the necessary

social and demographic data can be gathered. We consider this

approach an important step in order to overcome the current

difficulties in real data gathering. Furthermore the computational

path to the estimate of contact matrices represents a convenient

scheme for the introduction of detailed individual based informa-

tion in a wide range of modeling approaches working at the

population level. For this reason we publicly release the entire

collection of contact matrices to the scientific community (see

Table S1 and S2; public download is also available at http://www.

epiwork.eu/resources/matrices).

Materials and Methods

Socio-demographic data
In order to provide a quantitative estimate of contact matrices

for 26 European countries we used highly detailed data on the

country-specific socio-demographic structures (e.g., household size

and composition, age structure, rates of school attendance, etc.)

available at the Statistical Office of the European Commission

[40]. These data were used to generate highly detailed synthetic

populations for all countries of the study area. More specifically,

census data on frequencies of household size and type, age of

household components by size were used to group individuals into

households. Data on rates of employment/inactivity and school

attendance by age, structure of educational systems, school and

workplace size allowed us to either assign individuals to schools

and workplaces or tag them as inactive, according to their age.

The procedure to generate the synthetic populations is quite

standard in the context of individual based models and is therefore

discussed in detail in Text S1. In the following paragraph we

present the approach used in the computation of the synthetic

contact matrices.

Computing contact matrices
The mathematical representation of epidemics relies on the

description of the transmission process which is usually modeled

through the force of infection, that is the rate at which a susceptible

individual acquires the infection because of the interactions with

infectious individuals. This quantity is proportional to the number of

infectious individuals, the specific transmission probability of the

infection during a contact and the overall rate of contacts of each

individual with other individuals in the population. Although a vast

majority of studies assumes the population as homogeneous –all

individuals are equal with same average contact rate– the social and

demographic structure of the population is generally reflected in

heterogeneous contact patterns among individuals. Age is obviously

one of the main determinants of the mixing pattern of individuals.

Children tend to spend more time with children and members of

their household, active adults mix with individuals in their workplace

etc. Mixing patterns by age are generally defined by a contact matrix

whose elements Mij represent the average frequency of ‘‘adequate’’

contacts that an individual of age i has with individuals aged j. We

define a contact as ‘‘having shared the same physical environment’’

[11] (e.g., the same household, or the same school or workplace). To

compute age-specific contacts we postulate that at the finest scale of

the single units, e.g. single households or schools, mixing is

homogeneous. This hypothesis is necessary given the lack of

information on contacts at this fine scale. By aggregating units we

then compute ‘‘setting-specific’’ contact matrices, represented by the

four matrices accounting for contacts within household members

(matrix H), within schoolmates/teachers (matrix S), within work-

place colleagues (matrix W ) and in the general community (matrix

R). Finally, the overall age-specific matrix M is computed as a linear

combination of the four matrices H , S, W , R.

To give an example, let us see in more detail the computation of

the matrix of contacts within households, H. For each individual k

of age i, living in household h(k) of size n(k)
H w1, the household

contacts with individuals of age j are defined as the set of

individuals of age j living in household h(k). We denote the number

of individuals in this set by h
(k)
j . Then, once h

(k)
j is computed, we

obtain the probability that individual k has contacts with

individuals of age j by dividing the number of contacts with

members of age j by n
(k)
H {1, which represents the number of

individuals living in the same household as k. The expression for

the frequency of contacts within households H between individ-

uals of ages i and j is then

f H
ij ~

1

nH
i

X

1ƒkƒNi

n
(k)
H w1

h
(k)
j {dij

n(k)
H {1

if nH
i w0

0 otherwise,

8>>>>><
>>>>>:

Author Summary

The dynamics of infectious diseases caused by pathogens
transmissible from human to human strongly depends on
contact patterns between individuals. High quality obser-
vational data on contact patterns, usually presented in the
form of age-specific contact matrices, are difficult to gather
and are currently available only for few countries world-
wide. Here we propose a computational approach, based
on the simulation of a virtual society of agents, allowing
the estimation of contact patterns by age for 26 European
countries. We validate the estimated contact matrices
against those obtained by the most extensive field study
on contact patterns, with data collected in eight European
countries. We show that our contact matrices share some
common features, e.g. individuals tend to mix preferen-
tially with individuals their own age, and country-specific
differences, which can be partly explained by differences in
population structures due to different demographic
trajectories followed after WWII. Our analysis highlights
well defined correlations between epidemiological param-
eters and socio-demographic features of the populations.
This study provides the first estimates of contact matrices
for many European countries where specific experimental
data are still not available.

Social Contacts and Infectious Diseases
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where Ni is the total number of individuals of age i in the

population, nH
i is the number of individuals of age i with at least

one contact in the household (note that some individuals may have

zero contacts) and dij is the Kronecker delta function that allows

excluding individual k from the set of her/his own contacts. A

straightforward example of the computation of household contacts

frequencies is provided in Figure 1.

In order to transform the frequency of contacts into contact

matrices relevant for infectious disease spreading, we need to

consider the following quantities:

N pH
i ~

nH
i

Ni

which is the probability for age bracket i to have at

least one contact in the household. This probability is less than

one as individuals may live alone;

N NH
i which is the rate of total effective contacts in the

household for individuals of age i. This number depends on

the time scale, the type of disease etc.

We can therefore define the synthetic contact matrix for

households

MH
ij ~pH

i f H
ij ,

which provides the relative frequency of contact among age

classes. In order to obtain the rate of effective contacts between

classes i and j we need then to consider the product NH
i MH

ij . In

the following, in the lack of a better knowledge, we will assume

that the effective contact rate is age independent: NH
i ~NH .

Expressions analogous to the previous one can be used to compute

the frequency of contacts by age within schools (superscript S) and

within workplaces (superscript W ); the matrix for schools MS is

given by the sum of the matrices for each school level, from pre-

primary to higher education. As regards the frequency of contacts

in the general community, we assume homogeneous mixing

among individuals, thus the columns of the matrix (superscript R)

are proportional to the number of individuals by age.

In order to define the ‘‘adequate’’ contact matrix [41] we

assume that the total rate of effective contacts in the households

can be expressed as NH~Ntota
H , where Ntot is the total rate of

effective contacts and aH is a constant providing the fraction of

effective contacts within the household. Similar expressions can be

written for all other settings. Since there is evidence that infection

transmission is not uniform by setting [42,43] and the relevance of

every setting (household, school, work, general community) in the

transmission depends on the pathogen responsible for the disease,

in principle it is possible to estimate empirically the fraction of

transmission events rK in each setting K[ H,S,W ,Rf g. In this

study, in order to give a baseline, we assume values for influenza-

like-illness (ILI) transmission following empirical estimates of the

proportions of transmission in the different settings [5,42,44–46]:

0.3 in households, 0.18 in schools, 0.19 in workplaces and 0.33 in

the general community. Although these weights are related to

influenza, they have already been used in [11] to generate a

synthetic contact matrix for the Italian population, which has been

shown to capture Varicella and Parvovirus B19 data.

For each setting K we obtain the condition

Ntota
K
Xv

i~0

Xv

j~0

MK
ij ~Ntot%K ,

where v is the maximum age of the population. This set of

equations readily provides the values

aK~
%KPv

i~0

Pv
j~0 MK

ij

:

The resulting adequate contact matrix M is therefore defined as

the linear combination of the contact matrices in each setting:

Figure 1. Example of the computation of household contact matrix. a Computation of contact frequencies for every member of a household
composed by two adults aged 31 and two children of 5 and 6 years old. The sum of the four contributions gives contact frequencies within this
household (in red). b Contact frequencies within a household composed of an adult aged 31 and a child aged 5. c Assuming that these two
households constitute the whole population, the frequency of household contacts that individuals of age i have with individuals aged j is given by
the sum of the contributions from each household, divided by the number of individuals aged i having at least one household contact.
doi:10.1371/journal.pcbi.1002673.g001

Social Contacts and Infectious Diseases
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Mij~
X

K

aK MK
ij :

This notion of adequate matrix of total contacts appears to be

appropriate, up to a scale factor, when the transmission

coefficients of the infection depend only on settings (i.e. they are

age-independent), and provided that the proportions of transmis-

sion in the different settings are roughly constant during the course

of the epidemic.

Matrix M defines the contact pattern among ages up to a

constant Ntot that has to be considered as an appropriate rescaling

factor when comparing matrices defined according to different

time scales or data aggregation processes. In the study of epidemic

processes, by assuming that the probability of transmission q per

effective contact is constant, the contact rate Ntot is usually

absorbed in the definition of the transmissibility rate b~qNtot that

is used as the scaling factor determining the reproduction number

R0 that characterizes the specific pathogen transmission. R0

essentially represents the average number of secondary cases

generated by a primary case in a completely susceptible population

[47], and it is therefore the threshold parameter determining the

dynamics of the epidemic.

Remarkably, our matrices are computed by considering one-

year age brackets, from 0 to 100 and over years; this is the most

refined version of our data on frequencies of contacts. They can

however be aggregated in different ways, depending on the

purpose for which they are used: for instance, for childhood

diseases one may prefer to group contact data for children

according to educational levels.

Although we are dealing with very detailed data on the socio-

demographic structures of European countries, there are a number

of limitations and assumptions that it is worth stating. First of all,

although the relevant statistics could be gathered from other

sources, we consider Eurostat as the only source of data on

occupation rates. This is the reason why we decided to exclude

Belgium, Poland and Malta from our study in view of the

incomplete information on employment and schooling rates.

Furthermore, the different household structures considered in our

virtual society cover about the 95% of the total number of

households in Europe. We do not allow however families with an

aggregate member or non-private households (such as rest homes,

dorms, religious and military institutions). Finally, another

limitation lies in the assumption of homogeneous mixing for the

contacts occurring in the community at large (i.e., not occurring

between household members, schoolmates and work colleagues).

In fact, this implies to disregard any kind of preferential mixing,

e.g. by age, and the level of activity of individuals, which may vary

by age, as documented by Polymod data [9]. Clearly, the

availability of more precise and complete data on any aspect of

the socio-demographic structure of a population (e.g., number and

composition of non-private households; size and attendance of

nurseries) would allow a refinement of our virtual society.

SIR model with heterogeneous mixing patterns
In the classic SIR model the population is divided into three

compartments: susceptible (individuals that can acquire infection),

infectious (individuals that have been infected and are able to

transmit the pathogen) and recovered (individuals that are

immune to the disease–e.g. because they recovered from the

infection). In order to include the mixing patterns encoded in the

contact matrices, each group is characterized by an age structure.

Every susceptible individual of age i (belonging to the Si group)

experiences an age-specific force of infection li, which is

determined by the average frequency Mij of ‘‘adequate’’ contacts

that an individual of age i has with individuals aged j, by the

probability of contacting infectious individuals from every age class

j, and by a transmissibility bi that accounts for the probability of

infection per contact. The force of infection yields the rate of

transition of susceptible individuals into the infectious state Ii;

individuals then leave this status according to the recovery rate ci

(the inverse of the duration of the infectious period), entering the

recovered compartment Ri. For the sake of simplicity we consider

age independent transmissibility bi~b and recovery rate ci~c.

The set of equations governing the SIR model can be thus written

as

_SSi~{
Pn

j~1 bMij

Ij

Nj

Si

_II i~
Pn

j~1 bMij

Ij

Nj

Si{cIi

_RRi~cIi

ð1Þ

where Nj is the number of individuals in the population of age j

and n is the number of age classes considered. R0 is calculated as

the spectral radius of the next generation matrix [48], that is

R0~% bc{1M
� �

.

To analyze post-pandemic H1N1 serological data collected in

England and Wales in fall 2009 [49], we make use of a slightly

modified version of model (1) accounting for age-specific

susceptibility to infection, which is acknowledged as a further

critical determinant of the force of infection for influenza. In

particular, the equations for susceptibles and infectious become:

_SSi~{ri

Xn

j~1
bMij

Ij

Nj

Si

_II i~ri

Xn

j~1
bMij

Ij

Nj

Si{cIi

where ri~1:0 if iƒ15, 0:5 otherwise as resulting from estimates

reported in [50,51].

Results/Discussion

Synthetic contact matrices by age
Figure 2 shows the contact matrices obtained for the United

Kingdom. They present a number of clear features that reflect the

socio-demographic structure of the population: i) the matrix for

households (Figure 2a) shows a dominant diagonal, representing

contacts with siblings for young individuals, and with spouse for

adults, whose ages are generally similar. There are also a lower and

an upper diagonal, accounting for contacts that parents have with

their children and vice versa; these contacts are generally absent for

people aged over 60; ii) the structure of the educational system is

clear from the matrix of contacts at school (Figure 2b) as young

individuals mix mostly with persons of similar age, belonging to

same school level; iii) in the workplaces (Figure 2c) most contacts

occur between people from 20 to 60 years old, corresponding to the

working age population. Finally, the matrix for contacts in the

community, obtained by assuming homogeneous mixing, reflects

the age structure of the overall population only (Figure 2d).

In Figure 2e the ‘‘adequate’’ contact matrix is reported; for

young individuals, contacts within schoolmates of similar age are

represented on the main diagonal; mixing in workplaces is

prevalent for adults aged 20 to 60 years; people aged more than

65 years have most contacts with people of similar age. The

Social Contacts and Infectious Diseases
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difference between the upper left and the lower right entries of the

matrix is a consequence of the age structure of the population,

which is characterized by a small fraction of individuals aged over

80. Figure 2f reports the proportions of same-age contacts by 5-

year age groups of this matrix: from 40 to more than 50% of the

contacts of individuals under 15 years are within the same age

group, basically with schoolmates and siblings at home. Adults

contacts instead are much less assortative because the working

period spans a wide range of ages.

Country-specific features of synthetic contact matrices
Although similar attributes can be observed in the synthetic

contact matrices for all 26 countries under consideration (the

representation of all matrices other than UK are reported in Text

S1), some features are distinctive of specific regions. For instance,

household mixing is always characterized by the three diagonals

representing contacts between siblings/spouse or parents and

children, but in Northern Europe and France the upper diagonal

is shorter, reflecting the fact that people tend to leave home earlier

than in the other countries. The contribution of educational

systems is always represented on the lower part of the main

diagonal: the observed heterogeneity among countries is driven by

the organization of school cycles (e.g. the arrangement of primary

and lower secondary schools into either single or separate

structures is clearly visible). The central part of the matrices is

associated to contacts at work, which depend on the age structure

of the working population. Moreover, we can observe that mixing

with individuals of about 60 years of age tends to be higher in

Northern countries and lower in the others, particularly in

Southern Europe: this is probably due to differences in retirement

age [52].

In order to infer more rigorously whether similarities between

contact matrices can be identified to characterize specific groups of

countries, we use a hierarchical cluster algorithm. The algorithm

uses the average dissimilarity between two matrices x and y
(treated as vectors) as measured by the Canberra distance

d(x,y)~
Pn

k~1

Dxk{ykD
Dxk DzDyk D

; this choice was made because the

entries of contact matrices range over several orders of magnitude,

and this distance, differently from L1 and L2 distances, is

appropriate to measure average relative dissimilarities rather than

absolute dissimilarities [53]. We found that contact matrices can

be clustered in a way mainly reflecting the geographical location of

the country. This may be motivated with the observation that

neighboring states, for historical and cultural reasons, show

marked similarities in school organization and demographic

structures. The latter are well explained by the common

demographic trajectories followed after World War II with respect

to major structural changes, from the baby boom in the Sixties, to

the fall towards low fertility [54].

In particular, we isolated four main clusters (see Figure 3):

Ireland and Cyprus, Eastern, Southern and Northern Europe.

This grouping can be partly explained in terms of some

macroscopic indicators such as average age (which is a proxy for

the number of students in the population), household size (see inset

of Figure 3) and school organization. For instance, Ireland and

Figure 2. Mixing patterns by age in the UK. Representations in logarithmic scale of contact matrices by one-year age brackets for the United
Kingdom in the different social settings. Frequency of contacts (in arbitrary units) increases from blue to red. a Household. b School. c Workplace. d
General community. e The total matrix obtained as a linear combination of the matrices represented in a–d; the coefficients used are the proportions
of transmission in the four settings: 0.3 in households, 0.18 in schools, 0.19 in workplaces and 0.33 in the general community [3,11,42,44–46]. f
Proportions of contacts with individuals of the same age group, from the total matrix.
doi:10.1371/journal.pcbi.1002673.g002

Social Contacts and Infectious Diseases
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Cyprus are the youngest European countries: the average ages are

34.1 and 35.7 years respectively, while the overall average age in

Europe is 39.2. Moreover, they have the largest household size

(2.88 individuals for Ireland, 2.98 for Cyprus, 2.49 for Europe). All

Scandinavian countries (Norway, Sweden, Finland, Denmark) are

grouped into a unique sub-cluster which is characterized by large

average age and small household size. Eastern and Southern

Europe are similar in terms of average age and household size, but

in Southern countries elementary and lower secondary schools are

organized as separate structures, whereas a unique cycle is

predominant in Eastern countries. Interestingly, in Eastern Europe

two sub-clusters can be identified: Czech Republic-Slovakia,

which became two independent states few years ago, and

Estonia-Latvia. Lithuania instead is grouped with Germany and

Austria: this distinction may be due, at least partially, to

Lithuanian school organization, which is similar to Central and

Western Europe.

Validation with Polymod contact matrices
In order to validate the data driven modeling approach at the

origin of the synthetic contact matrices we compared our matrices

with those obtained by the Polymod project [9]. Polymod

currently represents the most accurate and extensive study on

mixing patterns in Europe. We considered only the subset of

countries common to both our approach and the survey study,

namely Germany, Finland, United Kingdom, Italy, Luxembourg

and the Netherlands. By jointly regressing the matrices for all

countries, each of them normalized so that the sum of all its

elements is one, the value of the coefficient of determination R2 for

the linear regression model is 0.72. However, we found that the

estimated value of the intercept is very close to 0 ({2:9:10{4, p-

value = 0.01). Thus we fit a linear model with zero intercept and a

single slope coefficient (Figure 4a), concluding that most statistical

variation between Polymod matrices and ours can be captured by

a single scale factor. Taking every country singularly and applying

the linear model with zero intercept to the original matrices

(without normalization), we got a coefficient of determination

ranging from R2~0:59 in Germany to R2~0:81 in the United

Kingdom (Figure 4b). The estimated scale factor depends on the

considered country, because of the large variability in the average

number of contacts of an individual in the Polymod matrices. A

further comparison highlighting the similarities between Polymod

and our contact matrices is shown in Text S1.

Contact matrices and seroprevalence profiles
Another way to assess and validate our approach consists in the

analysis of the prevalence by age profile generated by using

Polymod matrices and our synthetic matrices in ILI epidemic

models. As an example, we considered the epidemic prevalence

generated by an age structured SIR model in a fully susceptible

population (as detailed in the Materials and Methods section). The

model includes the heterogeneity of contacts by age by introducing

a force of infection across age groups modulated by the matrix

Mij . We considered a basic reproduction number R0~1:4 and

compared the results obtained by using the contact matrices

derived from both the Polymod survey and our model. The results

reported in Figure 4d show that Polymod matrices and synthetic

matrices yield qualitatively comparable profiles of seroprevalence

by age for all countries, with a few noticeable deviations in

Germany and the Netherlands (i.e. the countries having the lowest

values of R2 for the linear model, see Figure 4b). As a double check

with regards to the Netherlands, we performed the simulations

also by considering the contact matrix reported in [7] and

obtained by a survey prior to the Polymod one. In this case the

results are in good agreement for age groups under 60 years old,

while for elderly individuals our matrix gives results closer to those

obtained by using the Polymod matrix.

Furthermore, in order to validate numerical simulations against

empirical data, we compared predictions of our and Polymod

contact matrices to seroprevalence data collected in England and

Wales at the end of the second wave of the 2009 H1N1 pandemic

influenza [49]. We simulated this epidemic by using both the

Polymod and our contact matrix for the United Kingdom. An age-

specific susceptibility to infection was assumed; however, this

parameter has not been fitted to epidemic data, but its value has

been set to 2.0 for children under 16 years of age, following the

estimate in [50] later confirmed in [5,51]. The only degree of

freedom in the fit is therefore represented by the scale factor which

can be tuned to obtain different values of R0. The results are

shown in Figure 4c: our model is able to reproduce well the

seroprevalence of individuals in the classes 0–4, 5–14 and 65+
years old, while it underestimates intermediate age groups, where

the Polymod matrix instead performs slightly better. Overall,

model simulations belong to the 95% confidence interval of

serological data in five of the six age groups considered in [49].

It is worth remarking that profiles predicted by employing our

matrices are smooth because the proportions of contacts are

derived from the entire simulated population. Polymod matrices

instead are based on the observation of a sample of the population,

and this leads to a less regular seroprevalence profile (as can be

seen for instance for the Netherlands, where prevalence for

individuals aged 19–29 appears to be much lower than for the

adjoining age groups). More in general, the prevalence predicted

from the synthetic mixing patterns is higher among school-age

children, intermediate for working ages and progressively declin-

ing in the elderly; prevalence among little children is at an

intermediate level. This pattern is mainly driven by country-

specific employment and schooling rates, along with the scholastic

organization. Simulated seroprevalences, using our contact

matrices in the same epidemic setting, for the countries not

Figure 3. Characterization of synthetic contact matrices.
Clustering of countries on the basis of total matrices. a Dendrogram
of cluster analysis based on the Canberra distance. b Map of Europe
and grouping of countries made by the algorithm; countries having the
same color belong to the same cluster. c Average age and household
size for the 26 countries considered. Colors as in the map.
doi:10.1371/journal.pcbi.1002673.g003
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covered by Polymod are provided in Text S1. The shapes are all

similar; however, some differences are visible: for instance,

following the decline of prevalence after school age, a second

steep decay occurs in all countries at a variable age, generally

higher (around 60) in Northern Europe and lower (around 50)

elsewhere and more markedly in Southern countries. This is

probably an effect of the differences in the retirement age across

Europe, as we previously pointed out.

Comparison with average European matrix
An intermediate choice between homogeneous mixing and

country-specific contact patterns would be to consider mixing

patterns as derived by appropriately averaging over the 26

country-specific contact matrices; therefore in this section we

compare results obtained by assuming homogeneous mixing, the

average European matrix and country-specific matrices. We

considered an SIR model where all the basic parameters and

scaling factors are set on the baseline yielding a basic reproduction

number R0~1:4 for the European average. For each country we

used the synthetic contact matrices aggregated by one-year age

brackets up to 84 years of age (so that all matrices have the same

dimension). All other parameters being equal, the different contact

matrices in each country define different values of R0 and different

epidemic behaviors in each country. In particular, the reproduc-

tion number R0 can be calculated (see Materials and Methods

section) for each contact matrix.

The improvement obtained by using either the European

average matrix or country-specific matrices compared to the

homogeneous model is evident e.g. in terms of final attack rate

which, as already noticed in previous computational studies [26],

Figure 4. Comparison with Polymod contact matrices. a Linear regression model with zero intercept for Polymod matrices [9] Pn against those
from our model, Mn (results shown in logarithmic scale). All countries are considered together and every matrix is normalized so that the sum of its
elements is one. Yellow dots refer to the terms on the diagonal, light blue dots correspond to the other entries of the matrices. The value for the
regression coefficient is 1.03 and the coefficient of determination R2 results to be 0.71. b As in a but for each country singularly, without matrix
normalization. In every plot the values for the regression coefficient a and the coefficient of determination R2 are reported. c Green bars represent
the average seroprevalence of H1N1 influenza infections in England and Wales during the 2009 pandemic as estimated in a serosurvey [49] (in that
study a titre §32 for haemagglutination inhibition has been considered for defining seroconversion in the population) and the black lines represent
the 95%CI. Blue bars represent the seroprevalence as obtained by simulating a SIR model with R0~1:46 using our contact matrix. Red bars represent
the seroprevalence as obtained by simulating a SIR model with R0~1:42 using the Polymod contact matrix. d Simulated seroprevalence profiles by
age. using Polymod (red) and our matrices (blue), for an epidemic emerging in a completely susceptible population, assuming R0~1:4. In the plot for
the Netherlands the profile obtained using the matrix from [7] is also shown (dark green).
doi:10.1371/journal.pcbi.1002673.g004
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is always overestimated by the homogeneous assumption

(Figure 5a). Although we found a strong positive correlation

between R0 and attack rate following the country-specific

approach (Pearson correlation test 0:71, p-value v0:001), the

result is clearly far from the homogeneous mixing model that does

not consider any contact structure.

By applying to every country the average European contact

matrix, large differences in terms of attack rate and peak day can

be observed compared to the results obtained with the country-

specific mixing patterns, especially for values of the basic

reproduction number consistent with influenza epidemics

(Figures 5b–c). These variations are driven only by the structure

of contacts used, as the population considered is the same. In

particular, depending on R0, peak days may differ by several

weeks (Figure 5c). This is clear also from Figures 5d–g, where

epidemic profiles corresponding to R0~1:4 for four countries are

shown. Moreover, the use of the average contact matrix yields a

general alignment of epidemics in the different countries, while

differences in timing are clearly visible when country-specific

matrices are used.

Socio-demographic structure and disease epidemiology
The synthetic contact matrices allow us to analyze the effect of

the different social and demographic structure of countries on the

evolution of infectious diseases characterized by the same natural

history. For the sake of simplicity we considered an SIR model

with basic parameters and scaling factors corresponding to

R0~1:4 in the UK. In each country we used the synthetic

contact matrices aggregated by 5-year age brackets up to the class

70z.

The average age of the population is the single factor best

explaining the basic reproduction number (correlation {0:61, p-

value~0:001; and the linear regression model with the average

age as the only independent variable gives a coefficient of

determination R2~0:37, p-value~0:001). We found that a linear

model having both average age and matrix assortativeness

(measured by the Q-index [11], see Text S1) as independent

variables represents the best option to explain the variability of R0

between countries: R2~0:69, p-valuev0:0001. However, matrix

assortativeness cannot be derived directly from routinely collected

data, but is characteristic of the specific contact matrices, therefore

it is unknown a priori. Nonetheless, matrix assortativeness is

strongly related to the duration of the primary school cycle

(correlation {0:72, p-valuev0:001). Therefore, we decided to

add the duration of the primary school cycle as a proxy for matrix

assortativeness in the linear model for explaining R0 having

average age as independent variable; this model gives R2~0:46
and the analysis of variance reveals a statistically significant

improvement (p-value~0:05) with respect to the model consider-

ing the average age as the only independent variable (see

Figure 6a). As regards the final attack rate, we found that the

best single socio-demographic factor explaining the variability

Figure 5. Country-specific matrices and European average. a Final infection attack rate as a function of the basic reproduction number R0 in
the different countries (blue dots) by adopting country-specific matrices and by assuming the same probability of transmission q in all countries –
specifically, the value resulting in R0~1:4 by adopting the average European matrix (green dot). The attack rate corresponding to the average
European matrix is computed by assuming the average European age structure in the model. Red line represents the attack rate of the homogeneous
mixing SIR model for values of R0 in the range of variability of the basic reproduction number of country-specific matrices. Grey line represents the
best fit of the linear model to data points related to the use of country-specific matrices. b Percentage variation of infection attack rate for increasing
values of R0 of models based on country-specific matrices with respect to models based on the average European matrix (with country-specific age
structure). c As b but for the variation of the peak day. d–g Daily prevalence over time of models with R0~1:4 based on either the country-specific
matrix (solid lines) or the average European matrix (dashed lines, with country-specific age structure) in Germany, Italy, France and Slovakia
respectively. In this figure we assume the generation time to be 3.1 days.
doi:10.1371/journal.pcbi.1002673.g005
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between countries is the average age of the population (correlation

{0:91, p-valuev0:001; see Figure 6b). Finally, less strong

correlations between socio-demographic features of the popula-

tions and epidemiologically relevant quantities are shown in Text

S1. We also found a relationship between the proportion of

individuals less than 16 years old in the population and the basic

reproduction number (correlation 0:46, p-value~0:016; Figure 6c),

in line with a recent study on the 2009 H1N1 influenza pandemic

[55]; the correlation of this fraction of the population with the

attack rate is even stronger (correlation 0:76, p-valuev0:00001;

Figure 6d). These results highlight that the epidemic spread is

affected by the presence of younger individuals in the population,

who are generally exposed to a larger force of infection than the

elderly.

Conclusion
In this work we propose a method, based on the analysis of the

contact network in a highly detailed virtual society, and compute

the related matrices of adequate contacts for 26 European

countries.

Our analysis highlights well defined correlations between

epidemiological parameters and socio-demographic features of

the populations. Specifically, we found that the basic reproduction

number is well explained by a linear model having average age of

the population and duration of primary school cycle as indepen-

dent variables, whose values are easily derivable from routinely

collected social and demographic data. In addition, the average

age appears as the main determinant in explaining differences in

final attack rates between countries. In this perspective, the use of

synthetic contact matrices helps in improving the accuracy of

mathematical models predictions, which are increasingly used for

supporting public health decisions.

It is worth remarking that the presented approach is based on

routinely collected data, and it can be easily extended to every

country for which socio-demographic data are available. Notably,

by providing information by one-year age brackets, our contact

matrices are particularly suitable when dealing with childhood

diseases which require detailed information on contact patterns in

the youngest age classes. Finally, our method may be used also

retrospectively, in order to reconstruct contact patterns in the past

by using data from previous census rounds; this would be useful to

review classic results based on indirect estimates of contacts, such

as WAIFW matrices [47].

Supporting Information

Table S1 Total matrices of adequate contacts. Frequen-

cies of total contacts by age for 26 European countries. Please note

that disease transmission models usually require the average
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45. Cauchemez S, Valleron AJ, Boëlle PY, Flahault A, Ferguson NM (2008)

Estimating the impact of school closure on influenza transmission from Sentinel
data. Nature 452: 750–754.

46. Kwok KO, Leung GM, Riley S (2011) Modelling the Proportion of Influenza
Infections within Households during Pandemic and Non-Pandemic Years. PLoS

ONE 6: e22089.

47. Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and
control. Wiley.

48. Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the
computation of the basic reproduction ratio R0 in models for infectious diseases

in heterogeneous populations. J Math Biol 28: 365–382.
49. Hardelid P, Andrews NJ, Hoschler K, Stanford E, Baguelin M, et al. (2010)

Assessment of baseline age-specific antibody prevalence and incidence of

infection to novel influenza A/H1N1 2009. Health Technol Assess 14: 115–192.
50. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, et al.

(2009) Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings.
Science 324: 1557–1561.

51. Cauchemez S, Donnelly CA, Reed C, Ghani AC, Fraser C, et al. (2009)

Household Transmission of 2009 Pandemic Influenza A (H1N1) Virus in the
United States. N Engl J Med 361: 2619–2627.

52. Statistical Office of the European Commission (Eurostat) (2011) Average exit age
from the labour force by gender. Available: http://epp.eurostat.ec.europa.eu,

table code tsiem030.

53. Critchlow DE (1985) Metric Methods for Analyzing Partially Ranked Data.
Lecture Notes in Statistics. Springer.

54. Kohler HP, Billari FC, Ortega JA (2002) The Emergence of Lowest-Low
Fertility in Europe During the 1990s. Popul Dev Rev 28: 641–680.

55. Opatowski L, Fraser C, Griffin J, de Silva E, Van Kerkhove M, et al. (2011)
Transmission Characteristics of the 2009 H1N1 Influenza Pandemic: Compar-

ison of 8 Southern Hemisphere Countries. PLoS Pathog 7: e1002225.

Social Contacts and Infectious Diseases

PLOS Computational Biology | www.ploscompbiol.org 10 September 2012 | Volume 8 | Issue 9 | e1002673



www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


